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FRACTURE MECHANICS OF MULTILAYERED SHELLS. 
THEORY OF DELAMINATION CRACKS * 

G.P. CBEREPANOV 

Delamination cracks are considered, which develop along the boundaries of 
different layers in a multilayered thin shell. The characteristic linear 
dimension of the crack in planform is assumed to be large compared with 
the shell thickness. A general theory suitable for materials with any 
inelastic properties is based on an additional boundary condition on the 
moving contour of the crack , w ich is derived by using a heuristic hypo- 
thesis. The theory of invariait 

. . 
P-integrals and the general theory of 

fracture are also utilized. Model experiments are indicated which enable 
fracture diagrams, needed for carrying the theoretical computations out 
to numbers, by test means to be determined. As an illustration of the 
general theory, a one-dimensional problem on the fracture of a two-layer 
beam from ideally elastic-plastic materials is studied in detail-Further- 
more, the following questions are examined: the subcritical growth of 
delamination cracks in multilayered shells frcm elastic-plastic materials, 
the dependence of limit loads on the loading path, and delamination fat- 
igue cracks. An exact solution is given for the problem of elliptic, 
parabolic, and hyperbolic cracks in a plane two-layered plate, an axi- 
symmetric delamination crack in a two-layered cylindrical shell, and an 
elliptical delamination crack in a two-layered plane membrane. 

1. Boundary conditions on the contour of a delamination crack. Consider 
a multilayer thin shell with a delamination crack developing along the boundaries of the 
different layers. In planform, the characteristic linear dimension of the crack will be 
assumed to be large compared with the shell thickness. 

Let S denote the curvilinear surface of the delamination crack, and L the contour of this 
surface (Pig.1) . The crack divides the initial whole shell into two separate shells in the 
domain S: S' and 
ferring to these she:;; 

We shall give the superscripts plus and minus to all quantities ref- 
. It is required to establish how the contour changes in time and as 

a function of the external loads. This is a non-linear problem of shell theory since the 
contour L is not known in advance, and it must be determined during the solution.. 

Let us set up all the remaining boundary conditions for this problem. Three shells are 
in conjunction along the contour L, S', S- (in the domain S) and the initial shell So (out- 
side the domain S). Each satisfies the appropriate differential equations of the theory of 
thin shells. 
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The following boundary conditions should be satisfied on-the juncture contour L (the 
superscript zero is ascribed to quantities referring to the shell SO ): 

The continuity conditions 

a+ X a- B n", r+ = v' i=: v", &P = w- = cu" 

The equilibrium equations 

NO--N A- ,,+ i- N,, T,,‘= T,,+ + T,- 

M,,"-M,,+ + M, 

Q,” = Q,,+ 1; Q,-, M> - Wit + WY, 

(1.1) 

(1.2) 

(1.3) 

(1.4) 

Here t and n are the tangent and normal to the contour L on the neutral surface, u, v,w 
are the displacement vector components of the neutral shell surface along the a, fi and r 
axes, respectively, a$ is an orthogonal curvilinear Gaussian coordinate system on theneutral 
shell surface, s is the normal to this surface, N and T are the normal and tangential forces, 
M,, is the bending moment with bending axis n, IW,,~ is the torque in the nt plane, and Q 

is the transverse force. 
A delamination crack can be open or closed. In the latter case, the following conditions 

of joint operation of the shells S+ and S- must be satisfied at each point of the domain S: 
The normal continuity condition 

u)+ = w- (1.5) 
The equation of ultimate equilibrium (in the slip state) 

Apa* i- AYP? = f (AL) (1.6) 

and the equation of the associated plasticity law in the slip state (see Fig. lc) 

Au'lAv' = Ap,iApB; Au = IL+ - u-, Av = v+ - v- 

Apa+= -An,-= Apa, Aps+= -ApB-=ApB, 

Ap,+= -Ap,-= Apz 

(1.7) 

Here Apar APB, and Apr denote the appropriate intensity vector components of the addit- 
ional distributed load that occurs because of mutual superposition of the shells S' and S-; 
in the simplest case the function f satisfies the Coulomb dry friction law f = dk, + AP, kg P 
PO and p are the adhesion coefficient and the angle of friction), and Aa' and Au' are 
the velocity components of the mutual slip of the shells. 

Therefore, in the case of overlying shells, three n-unknown functions Ap,, Ape and Ap,, 
dependent on a and fi and participating in the equilibrium equations of each shell, appear in 
the domain S. The three equations (1.5)-(1.7) together with the equations of thin elastic 
shell theory comprise a closed system which naturally turns out to be non-linear because of 
the non-linearity of (1.6) and (1.7). The functions Apa and Ape should vanish on thecon- 
tour L. Note that if the contact friction forces are neglected and we put Apa = Ape = 0, 
then (1.6) and (1.7) vanish; the problem again becomes linear while one new equation (1.5) 
will correspond to one new function Apz. 

When there is partial contact between the shells S' and S-, the contact domain itself 
should be determined when solving the problem. On the boundary separating the open andclosed 
delamination domains, obvious connecting conditions should be satisfied for each of the shells. 

All the equations formulated enable problems to be set Up and solved when the position 
of the crack front is known. To deduce additional boundary conditions on the delamination 
crack front, we will make use of invariant r-integrals and the general theory of fracture 
proposed in /l/. 

Let us consider the boundary layer zone in the neighbourhood of a certain point Oof the 
contour L of the delamination crack (Fig.2). It is assumed that the width of this zone 
(along the normal n to the contour) is small compared to the characteristic linear dimension 
of the crack in planform (in particular, to the radius of curvature of the contour L and the 
radius of curvature of the shell) but large compared with the shell thickness (in practice, 
two or three times greater than the shell thickness on the basis of exact solutions). The 
shell-theory approximation is not suitable in the boundary layer and an exact three-dimensional 
theory must be relied upon. In the ordinary thin shell approximation the elastic field in 
the boundary layer can be considered planar in the neighbourhood of the Point 0. i.e., 
independent of the coordinate t along the crack contour, but the shell itself can be regarded 
as a plane multilayer plate with a crack front along the t axis of reCtangUlar Cartesian CO- 

ordinates Otnz (Fig.21 - 
We introduce the following assumption (it is heuristic in nature, results fromintuitive 

physical considerations, and is confirmed by well-known exact solutions). 
Delamination crack development at the point 0 is determined by the following quantities 

at this point: N,+,N,-,N,", T,*, T,-, T,,‘, Mn+,Mn-,%,o and is independent of the other bending 
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moments and torques and the transverse forces at this point. Crack development at the point 
0 is also independent of the presence of distributed tangential and normal loads at the crack 
edges and the side surfaces of the shell near the point 0. 

This assumption will be satisfied more exactly, the smaller the ratios h/l, h/R, where h 

is the shell thickness, R is the shell radius of curvature, and 1 is the characteristiclinear 
dimension of the crack in planform. On this assumption, the crack development at the point 0 
can be studied in a plane boundary layer quadrant (Fig.2b) with just the above-mentioned 
loads taken into account and the external loads on the crack edges neglected. We hence have 
the following boundary value problem in the plane nz for a multilayer strip with a crack: 

z = h,, z = -h_ 
z = 0, n < 0 ’ ur = hl -= T,t = 0 (1.8) 

n+W, &,=E,O+ %a% Ync = YntO 
n+ --m (z > 01, 6” = En+ + x”+z, Yn! = ynt+ 
n + --oo (z < 0), e, = E,- + X,-Z, ynt = ynt- 

(1.9) 

Here e, and ynr are the normal and tangential strains. Strict adhesion conditions hold 
along the interface of the layers for z = const . 

In the case of linearly elastic bodies, the following relations hold 

N,,‘= k,%,,‘, N,+ = k,+h+, N,- E k,-e,,- 

T,,” = k,“y;, T,’ = k,+&, T, =k,-y;k 
M,,” = kbonnD, M,,+ = kb+n,+, M,,- = kb-x,,- 

h<Ei 
-, k,= 1 - viz h&i, kb- &a) 

Here k,, k,, kb are the tensile, shear, and bending stiffnesses of the multilayer strip, 
respectively. They are obtained by summing the appropriate stiffnesses of all the layers in 
the strip; ht,El, G~,vr,Z~ are the corresponding i-th layer parameters: thickness, young's 
modulus, shear modulus, Poisson's ratio, and moment of intertia with respect to the neutral 
axis of the strip. 

Let us examine the closed contour Z in the Onz plane formed by the opposite edges of 
the crack, a circle of quite small radius enclosing the point 0, the side planes of the strip, 
and its transverse sections as n++eo (Fig.2b). According to the theory of invariant 
r-integrals, the following equation holds /2/: 

S (Unl - oijnju&dZ=O (i=i,2,3;i=U) (1.10) 
r 

Here nj is the unit normal to the contour z, (~11 is the stress, Ui the displacement, and 
U is the elastic potential per unit volume. Equation (1.10) is also valid for any inelastic 
bodies (elastic-plastic, viscoelastic, etc.) for quasistationary motion of the point 0 along 
the axis n at a velocity considerably less than the speed of sound in the strip; here, u is 
understood to be the specific strain energy. 

Let r denote the magnitude of the integral in (1.10) around the circle enclosing the 
point 0 (r is the residue at the point 0). On the basis of the boundary conditions (1.8) 
and (1.91, we have from (1.10) 

r = s (V - oilui, 1) dz = s (V - u,,e,, - ~‘nruz. n - z,,ty,,t) dz = 
L 

(1.11) 

[V,l; s= *s" - +r 
L --h, -h_ 

n-m n--t- 

vJ,l= - U/-l- U.+ f U,-; U, = - Ud + N,e,, -i_ M,,x, f T,,Y,,~ 

[V,]=j Vdz; ud = S P’, de,, + M,, dx,, + T, dy,J 
L 

Here Vd is the strain energy per unit area of the multilayer plate in planform, V, is 
the additional strain energy (the physical meaning of vd and LJ, is clear from the one-dim- 
ensional tension diagram of Fig.3 obtained as follows: we stretch the specimens by strains 
%I = I, given at the time t, and take off the corresponding force N, = N, (t); then by 
eliminating t we construct the curve N,, = N, (E,) for a given loading path). The square 
brackets denote a jump in the quantity enclosed in the brackets when intersecting the crack 
front. 

The equation on the crack front 
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r = [U,l (1.12) 

is the main result of delamination crack theory in multilayer shells for arbitrary materials. 
It follows, for instance, that if the rate ofcrackgrowth V is much greater than his, 
where T is the characteristic time of progress of the after-effect reaction of the multilayer 
material, then the crack develoment will be determined just by the instantaneous reaction of 
the material as a whole (i.e., by its elastic-plastic properties) and will be independent of 
the after-effect reaction of the material (i.e., of its creep and viscosity properties). 

Fig. 3 Fig.4 

Indeed, the boundary layer width An practically equals (2 -3) h (the asymptotic infinity, 
Fig.2) r hence for Vghlr the right side of (1.12) depends only on the instantaneous reaction 
of the multilayer material. The left side of (1.12), the quantity V. is determined by the 
properties of the material in a very small neighbourhocd of the crack front (small compared 
to the thickness of an individual layer hi), i.e., substantially by the chemicaland physical 
properties of the interfacial surfaces of the layers in the continuation of the crack. It is 
these properties that explain the observable effects of post-critical delamination crack growth 
and the failure of multilayer structures under relatively low loads. 

Three kinds of delamination cracks. Depending on the state of stress of the multilayer 
shell, we shall distinguish /2/the following special cases near the crack front (Fig-Z): 
normal rupture or separation (N,, = 0, T,, = O,iU,,#O), transverse shear (M,, = 0, T, = 0, N,# 

O)* and longitudinal shear (M,, = O,N,, = 0. T,#O). 
The stress and strain distribution near the crack front is found by solving the boundary 

value problem (1.8) and (1.9) for the boundary layer (Fig.2b). In the case of a linearly- 
elastic body this problem can be solved by the Wiener-Hopf method using a Fourier transform 
in n. The regularities of delamination crack development can be investigated directly by 
using the general equation (1.12) without analyzing the stresses and strains in the boundary 
layer itself. 

2. Investigation of the Laws of delamination crack development by tests. 
Equation (1.12) enables the intimate and complex processes of fracture at the ena of cracks 
in macrospecimens with cracks to be studied by measuring the changes in two macroquantities 
in a time t: the crack length 1 and the quantity [U.I. The research scheme, in principle, 
can be clarified by the simplest example of normal rupture of a two-layer specimen by tip 
forces. 

Suppose it is required to study the development of normal rupture delamination cracks 
propagating along the interfaces of two layers in a multilayer shell. To do this it is nec- 
essary to preparetwo-layer beams of the material of these layers 1 and 2, by reproducing 
exactly the method and technology of connecting their surfaces as well as the externalcondit- 
ions. The dimensions of the beam-specimens can be arbitrary. Then the beam with the artific- 
ially.produced initial delamination crack of length I is stretched by two transverse forces 
Q according to a given program Q(t). In this case, we have at the crack tip according to (1.11) 
(taking curvature into account) 

Mm0 = 0, x$ = 0, M,,+ = -M,,- = Q (t) 1 (t) (2.1) 

[Us] = Ql (x,+ - xn -)-$QW,+--4) 

The quantities n,,*(t) at the crack tip can be measured directly, but it is moreconvenient 
and exact to compute them from the rheological model of materials 1 and 2 determined from 
independent experiments on homogeneous materials without cracks. Therefore, using (2.1) the 

function [U,(t)] is found from the measured function 1 (t) * By Eq.tl.12) this equals r (t), 
and the determination of this function is the purpose of the investigation. 

The results of this study should be displayed in invariant variables in the form of a 
dependence of the rate of crack growth I' on the quantity r; in the general case this 
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dependence will also be determined by the loading described by the function llJ, (t)l. 
Using the postulate of similitude /l/, the 1' - r diagram obtained can be used to compute 

the normal rupture delamination crack development between materials 1 and 2 in any arbitrarily 
loaded multilayer shell for the same function IV, (1)l. To do this it is necessaryto subst- 
itute the function r(Z') from the diagram into the left side of (1.12) and solve the differ- 
ential equation obtained for 1 (0. A sufficiently large set of I'- r diagrams and their 
corresponding "loading paths" [U,(L)] can describe delamination crack development for any pair 
of materials with arbitrary properties. It is here more convenient to determine the sets 1(l) 
and [U,(t)] in the computations initially from the known diagrams, and to select the function 

l(t) to be realized from the computed function that is closest to the "specified" function 
IV, (t)l . 

Computation using the critical state. The crack velocity I' usually increases smoothly 
as I? increases (at least it does not decrease). But a critical value r = Zy,,,, exists where 
an abrupt increase in 1 is observed as it is approached. We will call the quantity y,,,, 

the specific adhesion energy /2/ of the pair of materials f and m. From the preceding it is 
clear that it dependgin general, on the function IV, (t)l, i.e., on the prehistory. However, 
like the precritical crack growth, such a dependence can (or must) often be neglected for many 
materials and external conditions. The general equation (1.12) hence acquires the following 
simple form: 

IV,1 = zy,, (2.2) 

We will give several simple examples of a computation using the critical state (2.2). 

3. Fracture of a two-layer beam of elastic-plastic materials. Consider 
the fracture diagram of a two-layer beam by two cantilever forces. Each material is ideally 
elastic-plastic. The force Q is assumed to be non-decreasing (simple loading). 

From the CT, - E, diagram the M, -x, diagram can be computed for pure beam bending. 
Then we calculate from (1.11) 

We now determine r = U,'+ U,- (Cl,'= 0) at the crack tip, where M,, = Ql. Depending 
on the relationship between the constants and the magnitudes of the loads, the following mod- 
ifications are possible: 

For 6Ql -c o,,hle g o,&~ (elastic layer 1 plus elastic layer 2) 

r = fw*l* (& + A) 
For urlhl* < 6Ql < u&g’ (elastic-plastic layer 1 plus elastic layer 2) 

(3.1) 

(3.2) 

For Ql= '14~,lh12 < l/sa,&,a(elastic layer 2 plus elastic-plastic layer 1 in the limit state, with 
a plastic hinge at the crack tip) 

(3.3) 

For o,,hlP < o,&* < 6Ql (‘1 u h \ I 81 14 (elastic-plastic layer 1 plus elastic-plastic layer 2) 

(3.4) 

Formulas (3.1)-(3.4) enable the development of the fracture process in an elastic-plastic 
two-layer beam with a crack to be analyzed using the crack growth criterion (2.2). 
on the relationship between the constants, 

Depending 

the limit load): 
the following modifications are possible (Qa is 

For 6Qbl < u,lhl”< u,&,~ crack growth starts before the origination of plastic zones in 
layer 1 and 2 (quasi-brittle fracture) 

For u,,hIz< 01Qb< a.p&9 crack growth starts after the origination 
layer 1 (brittle-plastic layer 2 plu; a quasi-brittle layer l), while 
the equation 

of plastic zones in 

Qa is the root of 

(3.5) 
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(3.6) 

For Me < hha C wbl d ‘11 a,,hla crack growth starts after development of the plastic 
zones in layers 1 and 2 (brittle-plastic layers 1 and 21, while Qb is the root ofthe equation 

(3.7) 

If the conditions 

or 

are satisfied, then the crack does not develop , and fracture occurs because of the depletion 
of the carrying capacity of beam 1 for the elastic or elastic-plastic state of the layer 2 

Qb = u,,htl41 (3.8) 

Crack growth in the problem under consideration is always accelerating, and unstable 
Since & _ i/l. 

In the case of rigidly plastic materials in both layers, when mmE, > M,la, %,A > 
h au,ta, the crack does not develop, while fracture occurs because of the form- 
ation of a plastic hinge in beam 1 at the tip of the crack (see (3.8)). It can be shown that 
this result holds for the arbitrary case of loading multilayer shells with delamination cracks. 

Transverse rupture crack in a two-layer beam. In this case we have 

M," = M,+ = M,,- = 0, T,,O = T,' = T,- = 0 (3.9) 
N,,O = 0, N,,+ = -N, N,- = N 
N = hEe,, U, = 11&Ee,,2 when 1 e, 1-K e, 
N = hEe,, U = V,hEe." when 1 e,I > e, 

Hence, using (2.2) we find the limit loads Nb in the case of monotonic growth of N: 
For Na< hla,l< h,o,, (quasi-brittle fracture) 

Nb = 2 fv, (& i- &)-“’ 
and for &us1 < 2&, (h,-lE,-l + &-'E,-')-'l* (PlaStiC fracture of layer 1 with non-developing 

cracks) 
N, = ‘ha,, 

4. Subcritical delamination crack growth in multilayer shells of elastic_ 
plastic materials. Consider the simple example of subcritical development of normal rup- 
ture delamination cracksina two-layer beam under pure bending by a moment M. In this case 
the quentity I' in the subcritical state is determined by (3.1),(3.2) and (3.4) for simple 
loading,where Ql = M must be substituted. It is independent of the crack length 1; as is 
easilyverified,this independence of 1 is preserved for any arbitrarily complex loading paths 
M(t) although the co?Yesponding expressions (3.2) and (3.4) will already be different (they 

willdependon the preceding loading path). 
BY a direct computation it is easy to confirm that r will be less (or at least not 

greater) for a complex loading path than for a simple loading path. This holds not only for 
this example, but also in the general case of a delamination crack in multilayer shells from 
elastic-plastic materials. All the regularities of subcritical crack growth have the follow- 
ing general mature: crack development starts as soon as a certain threshold value of r, de- 

pendent on the specific physical mechanism of the fracture process directly at the crack front 
/1,2/, is exceeded. Hence, the following general conclusion follows: if the external loads 
acting on the shell increase rapidly, and then decrease to normal working values, this will 
generallyresult in an increase in the threshold value of r. This physical effect of plast- 
icity "in the large" can turn out to be useful in many practical applications. 

It is seen that the Bauschinger effect results in a still greater decrease in [U,l. 
Hence, a substantial,increase in the threshold load level at which subcritical crack growth 
starts can be achieved by preliminary aoolicationof several "loading-unloading" cycles on 
the shell. 

For certain cases we will find the velocitv of subcritical delamination crack qrowth 1' 
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in the case under consideration on the basis of (1.12) and the following general regularities 
of subcritical crack growth /1,2/: . 

crack growth followinq instantaneously after loading 

crack develoment because of hydroqen embrittlement (in metals) 
- 

1’ = A,+, (1/lU,l - B,,) 

crack qrowth because of the kinetic local ageing mechanism 

(4.1) 

(4.2) 

(4.3) 

and crack growth because of corrosion 

I' = const (4.4) 

Evidently (4.1)-(4.4) are suitable even in the general case of delamination cracks in 
multilayer shells, where (4.1) must be supplemented by the condition of crack irreversibility 
under unloading (I' = 0 for [U,'l < 0). Strictly speaking, (4.2)-(4.4) are obtained for 
quasistationary loads. Under the simultaneous action of several subcritical crack growth 
mechanisms, the corresponding increments to the crack length must be added for each mechanism 
if there is no mutual influence on each other. In the case of a transverse rupture crack the 
quantity (U.1 is independent of 1 and the loading path. In the case of a cantilever loading 
by forces, the crack will be accelerated; the exact form of i(t) can be found from the app- 
ropriate differential equation obtained after substituting - [UJ, using (3.3)-(3.6),intoequa- 
tions of the type (4.1)-(4.4). 

5. Dependence of the limit Loads on the loading path. Consider the simplest 
caseof pure bending of a beam on a rigid substrate (when layer 2 in a two-layer beamis abso& 
utely rigid). The dependence of the bending moment M,, on the curvature x, in the beam 
foundation (at the tip of the crack) is displayed in Fig.4. Using this diagram, the value 
of IU,l is easily evaluated fox any loading path. For instance, we have 

[U,I = S (OAE) at point A along path aA 
[u,] = -_S @ABC) at point C along path OdBC 
IV,1 = S (OAE) - Ag (ABCD) at point A on the path OABCD, 

etc. Here S is the area of the appropriate curvilinear figure in Fig.4 , and AB is the area 
of the Bauschinger hysteresis loop. 

By generalizing these constructions it is possible to arrive at general conclusions. 

A, The limit loads for multilayer elastic-plastic shells with delamination cracks are 
independent of the loading path if secondary effects of the Bauschinger type can be neglected. 

B. The Bauschinger hysteresis effect displayed in Fig.4 results in an increase.in the 
limit loads for multilayer shells with delamination cracks. 

These deductions are generally valid for any "initiation" loads for which crack growth 
starts. 

Therefore, when there is no Bauschinger effect, the quantity [U,l is a function of M,,, 
N,, T,, not explicitly time-dependent , and calculable over a simple loading path (this is 
equivalent to the assumption that a shell with a crack is non-linearly elastic). Therefore, 
in this case the loads for which delamination crack growth starts in multilayer shells can 
be calculated assuming appropriate non-linearly elastic behaviow of the material. 

6. Fatigue delamination cracks. Let the external loads be certain periodic 
functionsof time. Then IU,l will also be a certain periodic function of time with weakly 
varyingcoefficients. 
(4.1)-(4.4), 

Using the regularities of subcritical crack development, of the type 
increments in the crack can be found for any programmedorrandom leading/2/. We 

willconfine ourselves here solely to taking account of the plastic effects of the instantaneous 
reactiondescribed by (4.1). 

Integrating this equation, 
known approach /2/ 

we can arrive at the following regularity by using a well- 

+_fil,( [V+2~~'nl-% __In %--,W;;~"Ke ) 

Here R is the number of load cycles (it plays the role of time), tilfdn is the crack 
velocity, ILrbmsxl and IU,~~**l are the appropriate greatest and least values of IV,] during the 
cycle, calculated along a simple loading path, AB is the area of the corresponding Bauschinger 
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hysteresis loop, and SS is the component indicating the influence of the prehistory at the 
beginning of the cycle (in the majority of cases it can be set equal to zero, see Fig. 4). 

Elastic multilayer shell with quasibrittle delamination cracks. In this case r is 
expressed in terms of the stress intensity factors /2/, hence (1.12) can be used to evaluate 
the intensity factors by means of the forces and bending moments determined from a computation 
of the elastic shell. 

Optimal design of multilayer shells with delamination cracks. Experience shows that 
delamination crack formation in multilayer structures is inevitable, especially during use. 
It is consequently important that the damage produced should be safe and not endanger the 
structure. The analysis performed above enables us to extract the most important structural 
parameter of a multilayer shell that controls this process. This parameter is the quantity 

I?; the structure should be designed so that this quantity is greatest in the most dangerous 
zones from the viewpoint of delamination . The technology for producing the structure should 
ensure the greatest possible deceleration of delamination cracks; the most important physical 
characteristics for the strength of the layer connection are the parameters yi,,,, &,,,, Us,,,, at,,,, 

A/,,, , etc. Depending on the conditions of structure operation, any of these parameters can 
play the main role in selecting the optimal technology and the optimal multilayer material. 

7. Examples illustrating this theory. Elliptical crack in a plate.. Suppose a 
flat plate is bonded together from two identical layers of thickness h. There is a crack of 
elliptic planform L on the layer boundary: 9/a* + y'/b' = 1. A constant pressure p is applied 
to the crack edges. Because of symmetry it is sufficient to consider the strain of the upper 
layer. 

. 

We have for the normal displacement w of the layer 

(7.1) 

) 

The solution of this problem has the following form: 

In this case T equals (we take account of the presence of the second layer) 

We also find the stress intensity factor 

(7.2) 

(7.3) 

(7.4) 

Therefore, an elliptic delamination crack always starts to develop along the minor axis; 
the crack outline changes until it becomes circular with a diameter equal to the majordiameter 

26 of the initial ellipse. Afterwards, the crack grows along the whole outline while re- 
maining circular. 

Let us estimate crack growth when there is an increase in pressure, using the following 
approximate assumption: the crack outline always remains elliptical with a minor diameter 
equal to 2b = 2b(pj and an invariant major diameter 20. We will confine ourselves to 
considering only the limit states when KI_= K,, at the point z= 0, y= kb; subcritical 
crack development can be studied by using this same assumption. 

From (7.4) we obtain 
fi = 35' + 2 + 3b=1 (7.5) 

(p = 2 )‘Upb”‘Ki~, B = b/a < 1) 

As is seen, the crack develops unstably on reaching the limit pressure Pb corresponding 
to the initial quantity be. changing to a circular shape when b=i. In the case of a 

disk-shaped crack 

We note the limiting case b/a-O (the strip IyI<b). In this case, by (7.4) 
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Unlike the case of an elliptical crack in a three-dimensional body, an elliptical delam- 
ination crack in a plate has no section of stable growth (however, such sections should, ob- 
viously, appear when there are other layers of more rigid material). 

A parabolic crack in a plate. Under the conditions of the preceding problem, let a 
delamination crack occupy a domain v>z'/(Zr,) in planform, where r0 is the radius of curvature 

of the parabola at its apex. The solution of the boundary value problem (7.1) for this domain 
is: 

The function K1(z) has one local maximum for Z= 0 and two absolute 

*Ir0/1/5. 
A hyperbolic dack in a plate. Under the conditions of the preceding 

(7.6) 

minima for Z= 

problems, let the 
crack occupy a domain S/a"- yalba< 1 in planform, where a and b are the parameters of the hyper- 
bola. 

The solution of problem (7.1) for this domain is 

(7.7) 

Delamination crack in a two-layer cylindrical shell. In a circular cylindrical shell 
of radius R and thickness 2h let there be an axisymmetric delamination crack of length 2~ 
which separates the initial shell into two cylindrical shells of thickness h, and h,, made 
from different materials (2h = hI + h,) . A constant pressure p is applied to the crack edges. 

The radial displacement w of cylindrical shells is determined from the boundary value 
problem 

-g+ 
Ehi Eihi” 

HYk.rn= ki= 12(1-y*) (is 1,2) (7.8) 1 
z=fL, w = 0, dwjdr= 0 

We write the solution of the boundary value problem (7.8) thus: 

sin 5,L ch h<z + sh hiL cm )iiz 

s,n Ail. ch hiL + sh h,L cm iiiL ) 

(i = 1,2) 

We hence determine 

(7.9) 

(7.10) 

This formula enables us to investigate the critical and subcritical development of a 
delamination crack. We will study only the critical state in which the criterion r = 2vr7n 
is satisfied; we will combine ourselves to the case of two identical layers of thickness 
h,= h, 4 = h, = h. According to (7.101, 

kl= 
we have in this case 

(7.11) 

A graph of the function p(z) is displayed in Fig.5. It consists of an infinite number 
of "almost-periodic" unstable branches having the lines 

hL,=O, 5 4.go-a, 9 13 T-n-- 17 T-“, 4% 4n, . . . 

as their asymptotes. 
The behaviour of the delamination crack in a cylindrical shell turns out to be very 

peculiar . For any initial crack Lo it will always grow to the nearest value 
right, 

Lb to the 
and will remain in this position L= Lb for as long as desired and under any loads 

(since the quantity r is zero for L= Lb ). Crack growth in the critical state will be 
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unstable, rapid, and may be fairly slow in the subcritical state. The presence of an infinite 
number of possible "barrier" states in which the crack is "stationary" and not subjected to 
any growth in the critical or subcritical regimes relates the system considered to guantum- 
mechanical systems for which such behaviour is typical. 

P ', 5 
in elliptical crack in a membrane- It was 

\ 
";;"\ 4% \ 

\ 
$fl assumed in the examples considered above that 

\ the bending stresses are large compared withthe 
\ \ \ tensile stresses of the middle surface. We will 
\ \ 

i, ' 
\ \. consider another extreme case when the bending 

\ \ \ stresses are small compared with the preliminary 

'\ I 
\ \ tension of the plate by stresses a, and oW 

0 I \ , 

\* 
\ 

'i2% 
' 3% L 

Initially we note the simple general form- 

\ ula for [v,] in the.case of a delamination 

-f . \ \ crack in an arbitrary multilayer membrane shell 
\ \ 
\ \ \ 

\\ \ 
\ [VA =+P+(g)‘++P-(qg (7.12) 

\ I \ (Pf = 2 +a$, 

Therefore, by (1.12) and (7.12), delamin- 

Fig.5 ation crack development in a membrane shell is 
determined by the angles of rotation of the 

corresponding shells at the point of the crack outline under consideration. 
Let a plane elastic membrane of thickness 2h be bonded together frcm two identical 

layers; there is an elliptical delamination crack L on the interface, to whose edges a 
constant pressure p is applied. 

We have for the normal displacement w of the upper layer 

3% a% P 
al~+by~---~ 
lo=0 when (z,Y)EL 

(7.13) 

The solution of this boundary value problem has the form 

17.14) 

As is seen, for a%+,> baa, the crack starts to develop along the y axis, while for Q% < 
baa, it develops along the x axis. During development, for given a, and a# the crack 
shape changes, tending to an ellipse ~*/u,+.y'/o~= )c describing the initial shape; later the 
crack development reduces to a selfsimilar expansion of this last ellipse because of mono- 
tonic growth in the parameter h(T =const along the contour on this ellipse). For fixed I& 
and a, the crack growth is always unstable as p increases. The parameters 'I, and 'JV are 
stabilizing factors, hence, depending on the loading path in the three-dimensional space (p, 

0%. 0s) patterns of any change in the elliptic cracks (neutral equilibrium, stability, insta- 
bility, "snaps", etc.) can be obtained. 
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